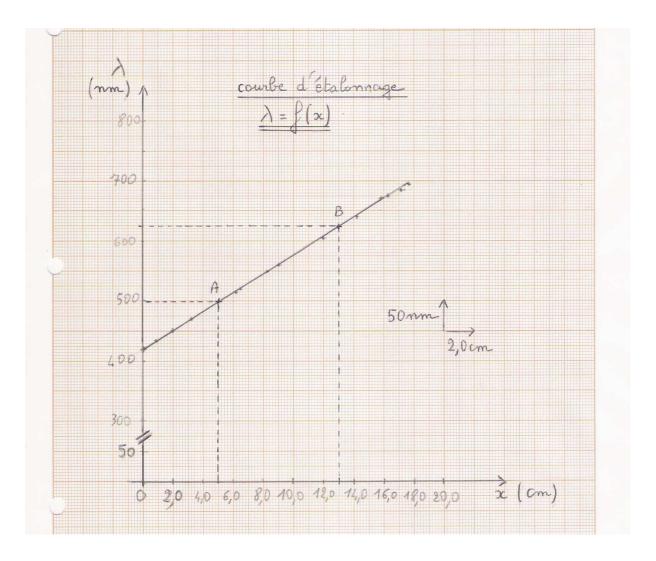
Activité documentaire :

Etudier le spectre d'une étoile

1. Analyser le document


- a. Les raies sombres sont dues à l'absorption de certaines radiations à la traversée de l'atmosphère de l'étoile.
- b. Le spectre de l'argon fourni sur le document est un spectre d'émission puisque les raies sont brillantes.
- c. Ce spectre sert de spectre étalon, c'est à dire qu'il permet d'établir la relation entre la position d'une raie et la longueur d'onde correspondante. Les valeurs numériques sont les longueurs d'ondes des radiations.

2. Tracer une courbe d'étalonnage

α.

x(en cm)	0	0,85	2,0	3,25	6,15	6,4	8,3
λ (en nm)	420	433,3	451	470,2	516,2	518,7	549,5
x(en cm)	9,0	11,7	14,15	15,8	16,3	17,1	17,65
λ (en nm)	560,6	603,2	641,6	667,7	675,2	687,1	696,5

b.

La courbe obtenue est une droite ne passant pas par l'origine, d'équation :

$$\lambda = a \times + b$$

Déterminons les constantes a et b.

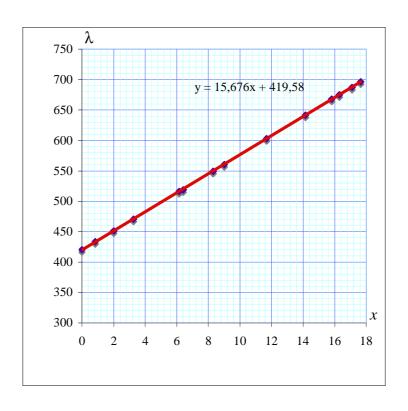
La constante a est le coefficient directeur de la droite tracée. Calculons-le. Soient deux points de cette droite dont les coordonnées sont :

A (5,0cm; 500nm) et B (13,0cm; 625nm)

 $a = (\lambda_B - \lambda_A)/(x_B - x_A)$

a = (625 - 500)/(13,0 - 5,0)

 $a = 15,6 \text{ nm. cm}^{-1}$


La constante b est l'ordonnée à l'origine. L'origine choisie étant la raie de l'argon :

b = 420 nm

D'où la relation numérique :

$$\lambda = 15,6 \times + 420$$

Avec λ en nm et x en cm

3. Exploiter les résultats

a. b. c.

n° de raie	Abscisse (cm)	Longueur d'onde (nm)	Élément
1	17,1	687,6	non identifié ici *
2	15,9	668,8	He
3	15,15	657,1	Н
4	6,2	516,8	Mg
5	5, 5	505,8	He
6	5,25	501,9	He
7	4,65	492,5	He
8	4,25	486,2	Н
9	3,3	471,3	He
10	1,8	447,8	Mg⁺
11	1,75	447,0	He
12	0,90	433,7	Н

^{*} La raie n°1 est due au dioxygène atmosphérique. On peut compléter l'activité en évoquant sa présence sachant qu'il ne peut pas y avoir de dioxygène sur Rigel.

d. La raie concernée est à l'abscisse 10,75 cm.