LE DOSAGE PAR ÉTALONNAGE SPECTROPHOTOMÉTRIQUE - CORRIGÉ

Dosage par étalonnage d'une solution de Bétadine.

1. Réalisation de la gamme étalon.

Réalisation de la gamme étalon des 9 solutions de diiode.

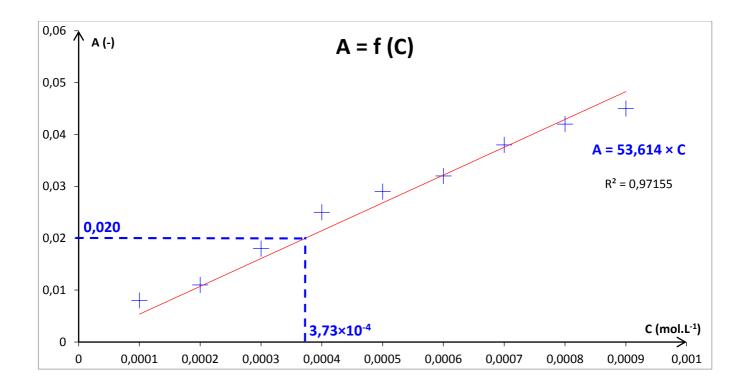
- Préparer 2 burettes graduées (Rinçage + remplissage sous le robinet + 0). Une avec la solution mère de diiode, l'autre avec de l'eau distillée.
- Verser dans les 9 tubes à essai les volumes V_{solmére} de solution mère et (V_{solfille} V_{solmére}) d'eau distillée indiqués dans le tableau.
- Au cours de la dilution, la quantité de matière prélevée en diiode reste constante.

Ainsi
$$C_{solm\`ere} \times V_{solm\`ere} = C_{solfille} \times V_{solfille}$$
 (voir démonstration TP n°1)


Puis $C_{solfille} = \frac{C_{solm\`ere} \times V_{solm\`ere}}{V_{solfille}}$

Solutions	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S 9
V _{solmére} (mL)	1	2	3	4	5	6	7	8	9
V _{solfille} (mL)	10	10	10	10	10	10	10	10	10
C _{solmère} (mol.L ⁻¹)	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³	1,0×10 ⁻³
C _{solfille} (mol.L ⁻¹)	1,0×10 ⁻⁴	2,0×10 ⁻⁴	3,0×10 ⁻⁴	4,0×10 ⁻⁴	5,0×10 ⁻⁴	6,0×10 ⁻⁴	7,0×10 ⁻⁴	8,0×10 ⁻⁴	9,0×10 ⁻⁴

2. Mesure de l'absorbance.


Mesures de l'absorbance des 9 solutions pour $\lambda_{\text{max}} \approx 475 \text{ nm}$ (voir doc2) et tracé du graphe A = f(C).

Doc.2 : Spectre d'absorption de la bétadine.

Solutions	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉
Α	0,057	0,098	0,134	0,156	0,207	0,292	0,360	0,395	0,447

Mesure de l'absorbance de la solution de Bétadine diluée 100 fois : $A_{100} = 0,020$

La concentration molaire de la Bétadine diluée est $C_{100} = 3,73 \times 10^{-4} \text{ mol.L}^{-1}$.

La concentration massique correspondante est alors $C_m = C_{100} \times M(polyvidone iodée)$ Numériquement, $M(polyvidone iodée) = 2 \times 127 + 19 \times (6 \times 12 + 9 \times 1 + 14 + 16) = 2363 \text{ g.mol}^{-1} \text{ et } C_m = 0.881 \text{ g.L}^{-1}$

Conclusion

D'après le doc3, $\mathbf{m} = C_{\text{I}2} \times \text{V} \times \text{M(polyvidone iodée)} = 100 \times C_{100} \times \text{M(polyvidone iodée)} = 100 \times C_{\text{m}} \times \text{V}$ Numériquement, pour V = 100 mL de bétadine, $\mathbf{m} = 100 \times 0.881 \times 0.100 = 8.81 \text{ g}$

Accord avec l'indication portée sur l'étiquette du flacon de Bétadine® dermique.

L'étiquette du flacon indique 10 g pour 100 mL.

On trouve lors du TP 8,81 g pour 100 mL.

L'erreur relative est alors $\varepsilon = \left| \frac{10-8,81}{10} \right| = 0,119$ soit environ 12% d'erreur, ce qui est acceptable ici.